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An Algorithm For Computing Matrix Square Roots With Application To Riccati Equation Implementation

D. W. Repperger

Aerospace Medical Research Laboratory
Wright-Patterson Air Force Base, Ohio 45433

Abstract

An iterative algorithm is presented for obtain-
ing a positive definite symmetric square root of a
positive definite symmetric matrix. This algorithm
has application in the implementation of Riccati
type equations. The approach presented here has the
advantage that apriori upper and lower bounds to
the converged answer can be obtained sequentially
at any point in the iterative process. These
apriori bounds can also be obtained for the Riccati
equation using a discrete implementation procedure.
Theorems on convergence are proved and examples
are worked.

I. Introduction

The study of optimal control and estimation the-
ory has been influenced in recent years by factori-
zation methods in the analytic expression of the
filtering equations [1,2,3]. Computationally the
solution of filtering and smoothing equations appears
numerically better behaved [4] when the equations
are of the square root type in lieu of the standard
forms. In the study of Riccati type equations [5],
an attempt has been made to apply the factorization
methods directly to the steady state Riccati equa-
tion but an algorithm to produce these results is
required.

In the study of Riccati type equations, many meth-
ods exist to determine solutions such as iterative
procedures [6,7], the partitioned algorithm approach
[8,9,10], the Matrix Sign Function method [11,12],
and other methods applicable in numerical integra-
tion, e.g. [15]. The Matrix Sign Function approach
is one method which has the advantage of obtaining
additional non-positive definite solutions through
the use of a Symplectic matrix composed of the ma-
trices in the Riccati equation. This aspect has
been discussed by Bucy [13] and Potter [14].

This paper will develop an algorithm for deter-
mining the square root of a positive definite

*The research reported in this paper was sponsored
by Aerospace Medical Research Laboratory, Aero-
space Medical Division, Air Force Systems Command,
Wright-Patterson Air Force Base, Ohio 45433. Fur-
ther reproduction is authorized to satisfy needs
of the U.S. Government.
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symmetric matrix. The convergence of the algorithm
will be proved with upper and lower apriori bounds

on the converged value determined at any point along
the sequential process. This algorithm can then be
applied to the implementation of Riccati type equa-
tions. The Riccati type equations that are applicable
for this approach include, but are not limited to,
the discrete version of the partitioned Riccati
solutions [8,10], and the various covariance express-—
ions which occur in square root filtering methods
already discussed [3,15]. It is noted that the square
root algorithm presented here will be compared
(through examples) to the Matrix Sign approach (11]
and not to the triangular factorization methods. In

a hard to find reference [16] another (but different)
algorithm was developed which has been discussed by
Bellman [17]. The algorithm in [16], however, has
limitations on the norm of the matrix considered and
appears to be related to a version of the spectral
factorization problem. In Astrom's book [18], similar
algorithms result from studies of related spectral
factorization problems.

In order to better understand why the factoriza-
tion methods yield algorithms which have numerical
advantages over other methods, this paper is divided
in four parts. First the motivation for using this
approach is demonstrated by working a scalar example
using an algorithm from Number Theory called Euclid's
algorithm to characterize an irrational number in
terms of continued fractions . Such methods are used
in Number Theory [19,20], and for scalar irrationals
(such as a square root), they give rise to definitions
such as "most efficient expansion'" and "best possible
approximation'. By defining a structure of the contin-
ued fraction expansion subject to certain constraints,
the definition of "most efficient expansion" can be
given in an explicit manner. Using a sequential proce-
dure defined as Euclid's algorithm [19,20], the contin-
ued fraction expansion is obtained for the irrational
number m . Euclid's method ( or a "most efficient ex~-
pansion') is then constructed for a scalar square root.
Apriori upper and lower bounds are obtained for both
expansions of these two scalar irrational numbers.

Part II of this paper introduces the '"square root
algorithm" which differs from Euclid's method. The
square root algorithm is applied first to the scalar
square root and the resulting continued fraction ex-
pansion is compared to Euclid's method. The apriori
upper and lower bounds are also calculated. The third
part of this paper extends the scalar square root al-
gorithm to the matrix case. Theorems on convergence
are proved and examples are worked. The matrix square
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root algorithm considered here is compared (through
an example) to the Matrix Sign Approach and the con-
vergence of the algorithm is studied numerically.

Finally, the fourth part of this paper considers
the application of this approach to the implementa-
tion of Riccati type equations. A manner of obtain-
ing apriori upper and lower bounds is demonstrated
for Riccati type equations. Some theorems are given
and an algorithm is demonstrated which extends the
results obtained here for the matrix case into an
algorithm for computing the Riccati equation. The
apriori upper and lower bounds for the Riccati equ-
tion are obtained sequentially as in the matrix case.
First, part I of this paper will introduce Euclid's
algorithm and provide a motivation for using fac-
torization algorithms.

II. Part-I Euclid's Algorithm-A Motivation For
Using Square Root Methods

It is well known that numerical problems occur in
computing Riccati solutions or other matrix equations
if the matrices are ill conditioned [21]. One measure
of ill conditioning occurs if the eigenvalues of the
free system are seperated by more than one order of
magnitude. One would expect, therefore, that factor-
ization methods should prove to have numerical advan-
tages because the square root matrix may have eigen-
values with less dispersion then the original free
system matrix. In an effort to study this effect num-
erically, Euclid's algorithm is introduced and a sca-
lar example is worked from Number Theory on an irra-
tional number. The purpose of this example is to ill-
ustrate to the reader the relationship between the
factorization methods to continued fraction approaches
and also to define the numerical advantages (in terms
of a definition called "most efficient") of the fact-
orization methods considered here. First some defini-
tions are necessary.

Let £ denote a scalar irrational dumber. The pro-
blem of interest is to determine a continued fraction
expansion of 50 in terms of rational numbers. First
the definition of a continued fraction is specified
as follows [19,20]:

Define: i
W= <§°, ags ctvs ay, ..£> (1)

which is notation for:

W= a,+ a; + 1 —
a
2

L i

. + 1
a*t.
"(2)
where each a; is subject to the constraint of being

positive and an integer. Then Euclid's algorithm [20]
is defined as follows:

Denote: a; = [ 4] (3)

where a; is defined as the nearest integer smaller
than the irrational number £;. Euclid's algorithm for
computing the aj from the £; proceeds as follows:

a, = [§,], now proceeding as an algorithm, let,

Ny S
T & ~ 2
and let aj = [& ;]. Inductively it follows that:
1

LTI

and a; = [€; ] and this completes the algorithm for
all a,. It is now appropriate to give a definition of
"most efficient expansion" as it relates in the con-
text of the continued fractions in equations (1,2).

Definition: "Most Efficient Expansion'

The most efficient [19,20] expansion of an irra-
tional scalar number & by a continued fraction rep-
resentation is the one in which Eo can be accurately
expressed to as many decimals as possible by the
fewest number of integer terms in the expansion. It
is noted that W is subject to the constraint of equa-
tion (2) with each a, positive integers. It has
been shown [19,20] thaé Euclid's method satisfies
this property for scalar irrationals. An example
will now be worked with the irrational number &
to illustrate Euclid's algorithm.

Example (1):

Let Eo be the irrational number w, i.e. €, = 3.1415%
Hence ap=[§ o] = 3. To calculate aj, compute

L= ey

or i 1
=£ -3 = .14159 = 7.06+

Now compute a; = [§ l] = 7. In this manner we calcu-
late (using double precision (29 digits) on a
CDC computer) the following numerical results:

T o= 3.141592653589793238462643383279
7.0625133059310457697930051531
15.99659440668569411310599874
1.0034172310133977856369454934
292.63459101223866070785852178
1.5758180949841629954527421461
1.7366595609113341887024369765
1.3574791573503535151332712575
2.7973658867611542733590927681
1.2541293985649846777332901666
3.9350032135077287460064498245
1.0695150407541735890218572566
14.385376015764735321479897720

OOV O Y Y Y
wWoN oOULEW N O

€ 10
€11
€12

This gives rise to a°=3, al=7, az=15, a3=1, a4-292,
ag=1, a6=1, a7=l, ag=2, ag=l, aj5=3, all-l, and
ajp=14 which results in the following partial
fraction expansion:

1
= 3+ 7+1
15+ 1
1+1
292+ 1

1+1

1+1
1+1
2+1
i+l
3+ 1
1+ 1
14+ )

(%)
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In order to study convergence and to develop apriori
bounds, it is of interest to study the partial sums
of equation (4). Let r,=a,, r)= aj + l/al, and in

general:
iy T Gos s cce ooy (5)

It has been shown explicitly [19,20] that for the
scalar case, the following upper and lower bounds
exist for =

B, €0, STl nini B, AR Gl Ea T

lim N—-QO (6)
which gives rise to apriori bounds of the form:

4 3B a2
106 113 7
@)
The scalar version of this proof was presented for
the square root of a scalar number in [22], the
matrix case will be presented in the sequel. There-
fore by calculating r_ and r_ , an upper and lower
bound on w can be determined apriori. By then calcu~
lating r, and r,, an even more accurate bound on T
can then"be determined. This procedure can be con-
tinued indefinitely with convergence to values as
close as desired. To illustrate to the reader how
these apriori bounds can be obtained for the irra-
tional number T, the terms r,, ****, Ig are calcu-
lated for the fraction in equation (4).

Lo 3 = 3.0

Tigd > 22/7 = 3.142857142857+

r, = 333/106 = 3.14150943396226415094+
ry = 355/113 = 3.14159292035+

r, 103993/33102 = 3.141592653011+

g 2 104348/33215 = 3.14159265392142+

Lo = 208341/66317 = 3.141592653467+

r,; = 312689/99532 = 3.141592653618%+
Tt 833719/265381 = 3.14159265358107777+

It is easily seen from these numerical values that
the r. satisfy the relationships specified by equa-~
tion (6). Also from the example it is observed that
the first four terms of the expression r, give
accuracy beyond 7 decimal places. One should now be
motivated to apply Euclid's algorithm to a quadratic
equation to observe the results.

III Euclid's Algorithm Applied To A Scalar Square
Root

Taking as an example the square root of 3, the
most efficient method will be studied numerically
using example (2):

Example (2):
Expanding the square root of 3 to 30 decimal places
yields:

& = /3 = 1.732050807568877293527446341505. Now
the calculation of the a, and £y will proceed as for

)
m:
ag=[1.732¢] = 1
1
€, = W'l = 1.36+
Hence a, = E €] = 1,A summary of the first 11 terms
yields:
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Eq = 1.3660254037844363479757026605
i 2.7320508075688992137673133780
€3 = 1.3660254037843965712518405766
£y = 2.7320508075691909097423020388
Eics 1.3660254037838529560257256617
Ele T 2.7320508075732481355762416877
Egis 1.3660254037762821195840238963
Eq = 2.7320508076297576012776604042
Eg = 1.3660254036708340246350351294
€10 = 2.7320508084168328955065207969

1.3660254022021315334827392008

which results in a_ =1,a,=1,a -2,a3-1,a4=2,a =1,
ag=2,a,=1,ag=2,a,~1, an alo=2. In this manner the
"most efficient'’method to calculate the square

root of 3 is as follows using the continued fraction
approach:

e

(8)
The periodic nature of the a, terms in equation (8)
is of interest because it is known that in Riccati
equation expansions of the partitioned algorithm
approach [8], this same periodicity occurs. The
periodicity obtained here numerically occurs due to:

gj = €j+2 for all j

1 ] (i odd)
2 (i odd)

with ajy

241

and this is a result due to the following identity:
1 +\3 = 1
i
VS - 1

The results obtained here so far indicate that using
the "most efficient' approach, the square root meth-
ods have a periodic property. If this method were to
be applied to the matrix case, the results do not ex-
tend readily due to the fact that the definition
"most efficient' does not have the same meaning in
the matrix case. In order to have an algorithm that
does extend to the matrix case, the square root al-
gorithm will next be presented. The square root al-
gorithm gives identical results to the "most effi-
cient" algorithm for the scalar case. The square
root algorithm, however, can be extended to obtain
matrix square roots, to implement the Riccati equa-
tion, and , in addition, to determine upper and low-
er apriori bounds.

IV - Part II- The Square Root Algorithm (Scalar Case)

Consider example (2) to determine the square root = ]

of 3 via the following sequence of steps: —
)
tet W = \3 X
Rewrite this as 0
¥ o= 1 (8.~ (9 0O
or W=1l4+ 1 =14 1 AN
1 R - |
7(B+D 2+3085 -
DISTRlG. Y cooes |
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1 1

W= 1+ 1+1 =14+ 1+1
5(\N3 -1 =
(3 -1) L i
1
2 (B +1)
(10)
or: 1
W=1+ I+ 1
2+1
1+1
2+ 1
1" +1
2+
S GLD)

Since 3 = 1.7320508+ , then the continued fraction
of interest is:
1.
1.732+ = et 1+ 1
2+ 1
1+ 1
2+ 1
N
ZER

(12)
This square root approach yields numerical answers
for this example which are identical to the‘most eff-
icient’method. For completeness the partial sums rg,

ry, *--,r)g are computed and displayed here:
ro =1
D=2/ =00
ry, = 5/3 = 1.667
rq = 7/4 = 1.750
T = 19/11 = 1.7272
re ® 26/15 = 1.7333
L7 71/41 = 1.7317
ry = 97/56 = 1.73214
rg = 265/153 = 1.732026
rg = 362/209 = 1.732057
10° 989/571 = 1.732049

r
It is easily  demonstrated that:

ro <t2 <rb <r5 <r8<r10 <' i 'W<' E °<r9<r7<r5<r3 <l‘1
3

and approximations to the square root of 3 can bgldet-
ermined by calculating only r, and rj; or more accu-
rately be calculating r, and ry, etc. This approach
will now be extended to the matrix case.

V-Part III-Extension of The Algorithm For Determining
Matrix Square Roots

In order to develop an algorithm for matrix square
roots, it is necessary to accurately define the ma-=
trices of interest. Let S. be an (nxn) positive def-
inite symmetric matrix. The (nxn) matrix S, which
is the square root of S; is required to be positive
definite symmetric and satisfy:

S0 8, = S (14)
where T denotes matrix transpose. S_ is defined as the
the square root matrix of S;. For sgmplicity in the
ensuing derivation, it will be assumed that:

8 = I.>0 and

$; =10 (15)
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where the inequality representation for two matrices
ADB implies that A-B is positive definite and I is
the nxn identity matrix. If equation (15) is not sat-
isfied for a specified So and Sl' then we require:

S, - € 150, and S, - € 2130 (16)

o
for some ¢ >0. The ensuing derivation follows exac-
tly with (16) replaced by (15) , but for notation
simplicity, the inequality of equation (15) will be
used. To derive the square root algorithm, proceed
as in equations (9-12) for the scalar case.

Denote:
Denote: S
So S1 (17)
This can be written as:
1/2
Sou=tL S1 -1 (18)

Theorem 1 will now be helpful in the derivation:
Theorem 1:

s}/ -1 - (s;-D Y4t - (Si/2+1)_1(51'1)
1 T STl e
s1/2 + 1 =(s;-D) (57" -D7L = (57/5-D) 75~ (190)
Proof: Consider the identities:
1/2 1/2
(s," -I)(s]""+1) = 5,1 (20a)
(s1/% 1)(31’2-1) - 5,-1 (20b)

Equation (19a) follows by pre and post multiplying
equations (20a-b) by (S1/2 +I)71 which is positive
definite. Equation (19b~) follows by pre and post
multiplying equations (20a-b) by (S% 2 -I)'1 which
is known to be positive definite by the inequality

Q.E.D.
The derivation of the algorithm will now continue by
rewriting equation (18) as follows:

/2_1)(51/2

(15).

- 1 1/2; =1
B 14 sy +1) (877 7+D) (21)

From equation (20a) this implies (21) can be written:
oy (22)

Since for two matrices A,B, (AB)-1=B"1A_1, it is
desired to represent equation (22) as:

Sp =

1+ (Sl~I) (s

1/2 -1 ,-1 s
S =L L] (S1 +I)(Sl—1) ] (23)
This can be written as: H
- - 1 -
s, = I+“(51‘1)1+5/2(51‘” ol T

Now the procedure used in equations (17-18) will be
reapplied to equation (24) resulting in:

/

S =
o

I+ TI[ (s;-D°1+ [I+Si 2-I](sl—I)‘I]'1 (25)

It is worthwhile to rewrite this as:
1/2
i

Using the results of equation (19b) yields:

- 1/2 -1 .-
S, = 1+ 1[2(5;-1) 1 +[51/ T o

s = o ¢

SEEE [2(51-1)"1 $[8

=]
“11(s,-D 7 ]

(26)

b
%
T
¥
3
5

j

f




Now expanding the inner term yields:
1/2

s =1+1[ 2(5;-D7L +1[ (s} +1-n)7 )7t @n
This can be rewritten as:
s, =1+ 102(5,-D7" + 1[21+(si/2-1)]'1 B (28)

The observant reader may now compare the term (Sl/Z-I)
in equation (18) with the same term in the inner most
brackets of equation (28). The next step in the der-
ivation is to repeat the procedure from equations
(18-28) resulting in the next expression as follows:

= 2 —~

s =1+1(2(5,-1) "1 (214 s/ 2-1) (51 241y (sH/ 241y 171y -1
o 1 1 1 1L (29)

etc. Since the derivation is periodic from this point

on, the results can be summarized as follows:

Let S A (30a)
¥ =1
SB = Z(Sl—I) (30b)
Then: o -1
S = L+I[S_+I[S,+I[S_+I[S,+I[S, **1 7 17117111
(o] B A B A B G
This could also be written as follows:
I
So = T SB + 1
SA+I
SB+I
SA+I
SB + h
(32)

The expressions (31-32) obtained are desired for
several reasons. First, the matrix case reduces to
the "most efficient'" approach as S, and S_ become
scalars. Secondly, the matrices S, and are
positive definite and it is desireable to have this
property to ohtain apriori bounds. Thirdly, it ap~
pears that this method has application in the im-
plementation of the Riccati equation as observed in
references [3,8,15]. The theorems on convergence
will now be given with their proofs in Appendix (A).
Some examples will then be worked to illustrate
this approach.

VIi-Convergence Proofs of The Square Root Algorithm

In order to establish a theorem on the convergence
of the nested matrix sequence (31), a sequence of
partial sums of the expression (31) will be derived.
Denote R;, i=0,1,*** as the matrix partial sums of
(31) which reduce to the scalar partial sums ry
defined in equation (5).

Let:
ii o5 1[ 2(s;-n7 17t Egg:;
Ry = T+ 1[2¢s;-1)~1 +1(21]71171 (33¢)
Ry = T+I[2(5)~1) " M1[214{2(5,-D) 7} o b
(33d)

or as an algorithm:

R, = 1 (34a)
B o= Bk 12(s,-n71 (34b)
R, =1 +[z(sl-1)'1+111+aN_2f1l'l(sac)

Theorem 2 contains the properities of convergence of
this algorithm.

Theorem 2: 1/2
lim Ry = Sl (35a)
N—> GO
with the following apriori bounds:

1/2 i
R <R, <R, <R, <o KRy = 81 <+ KRy KRRy Ry

lim N— QO (35b)
The proof of theorem (2) is given in appendix (A).
The scalar version of this proof was given in [22]
and similar proofs of the scalar example are given
in the references on Number Theory [19,20]. Some
examples will now be worked to illustrate the con-
vergence properities of the algorithm and also how
the apriori bounds may be used.

VII Some Numerical Examples Using The Matrix
Square Root Algorithm:

observe the proce-~
the square root of

As the simplist example to
dure presented here, consider
the following matrix:

Example 3
e 4.0, 0.0
Sl = i
{
0105 25.(3_l
Using the algorithm results in R;, and Rll as
follows:
1.999797, 0.0 12.000068, 0.0 i
Rin=! ande= i
- Lg.o , 4.746472 . 0.0 , 5.176476|

Please recall the inequality:

12
e e R
is true for all N even integers and all M odd inte-

gers. Also, the apriori bounds Ry, and Rll indicate
the accuracy of this procedure.

Example 4

25.0 (36)

Using the Matrix Square Root Algorithm results in

R30 and R31 as follows:




£
|
|
|
B
|
|
]

[1.788860 , .894447
» Ry =|
| 894447 , 4.919423

1.788847 , .894398
R =
39 L894398 , 4.919241

It is interesting to compute the products R30R30
and R31R31 -

T r3.999921371 »  5.999700491
R = !
30 30 | 5.999700491 , 24.9988798
e
> 4.0000555,  6.0002036 |
et

3 | 6.0002036,  25.00075808
which can be compared to S; of equation (36). The
next example was taken from reference [11l] to serve

as a comparison to the approach presented here and
also to look at higher order systems,

Example 5 X 5
L2 x20y, 2300 o 10,

Sl = 230. Kl (0121 TR SR i
10. » 1, s 025

Using the Matrix Sign Approach [11], Denman found
the computed square root as:

346.40961 , 0.608420 , .0287555

So = | 0.608420 , 31.61690 , .0303966

[
{
l
|
| 0 0287555 , 0.0303966, 0.705876

Using the Matrix Square Root Algorithm presented
here, the results obtained were:

328.739943 , .574269 , .027283 ‘

Rgyp= | -574269 , 31.616842, .030394!

©.027283 , .030394 , .705868
f s S
'364.918997 , .644195, .030298 |

| |
R633= | .644195 |, 31.616978, .030&00,

_-030298 , .030400 , .705868 |

Obviously for higher order systems, some modes con-
verge much faster than other modes. In other words
the ill conditioning of S1 will effect this algor-
ithm (by slowing down its convergence) in a manner
dependent on the degree of ill conditioning of Sj.
Also the effects of numerical bias occur in this
algorithm as can be seen because the element in the
third row, third column oﬁ&R632 and R has appar-
ently converged independent of the temgining elements.
Continuing the calculation ‘of for N> 2000 gave no
additional change in this term. This element may be
numerically biased (through roundoff errors or trun-
cation errors involved in the matrix inversion sub-
routine used here). An excellent discussion of this
problem can be found in Bierman [4]. One more ex=-
ample was worked to numerically study S. in the event
it was only positive semi-definite. 1
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Example 6

10.0. , 25.0 37)
The algorithm yields:
.772480 , 1.844994

R = R =
30011 844094, 4.666968] , *

.771536 , 1.845506
1.845506, 4.647099

The interesting result occ*rs by considering the
products R30R3O and R31 37

4.00072821 , 9.998849043

RapR, . =
30
0 9.998849043 , 24.998314450
s 4.001202784 , 10.000123404 |
R3jRyy

10.000123404 , 25.001421516

which can be compared to S, of equation (37); this

procedure appears to work if S. is only positive

semi-definite. Theorem (3) ill&strates that a best

estimate of a matrix square root can be obtained

by taking the mean value of the best two apriori

bounds.

Theorem 3:

(3a) The "best estimate' of a matrix square root
can be obtained as follows:

o™

= max (1/2) [ Ry + RN+l] (38a)
N

(3b) The error in the estimate specified by equa-
tion (38a) can be no worse than the following
bound:

IEREON (R (38b)

Hence gven if S, is not known, Rﬁ and RE provide
t

an estimate of the accuracy of S procedure. One
may now take appropriate matrix norms and examine
examples 3,4, and 5. Appendix B demonstrates a proof
of this theorem with an appropriate definition of
"best estimate'. This result can be seen numerically
in examples (3-5). The estimate specified by equa-
tion (38a) is as accurate a method as possible to
guess a matrix square root. The methods obtained
here will now be applied to the discrete version of
the Riccati equation.

VIII Part IV-Application of This Approach To
Discrete Implementation of The Riccati Equation

In the implementation of the continuous Riccati
equation at discrete times O-t°<t1< t, with

A= trs1 - t,» the following recursion relationships

can be obtaiked.

P, = P ;1 3L a* (39)

k1 0 + A[W+P




where Py» A, and W are quantities obtained over the
time intervald of a Riccati equation with zero in-
itial conditions. Equation (39) appears in one form
or another in the partitioned algorithm approach of
Lainiotis [8], the square root filtering algorithms
of Morf and Kailath [3], and in Potter and Womble
[15]. To apply this approach similar to the manner
in which the matrix algorithm (34a-c) was obtained,
note the following sequences:

-R—O = PO

B o=k afw) 1A

W) +A[|.¢+f_1>0]‘1]‘1AT

Ry = Poralur[Po+alw] "1aT]"1) AT

The Riccati Equation Algorithm becomes:

Eo =B (40a)
= -1.T

Ry o B X A[W] "A (40b)
Ry = P+ Alw+®Ry_) 17T (400)

Theorem (4) contains the application of the approach
here for Riccati equations.

Theorem 4&:
1f P,>0, A>0, and W>O0, then:

(a) Al R;{>0, i=0,1,---

(b) !{N<PK<I{M , N even, M odd with N<K, and M<K.

(c) The following apriori bounds exist as N—e O (or
as A\Nt—»0) for the continuous case:

lim Py < LRy RERLE,
N—-) or
LOt—+0

R, <Ry<R <R/ <L

with apriori bounds:

R A[W(Po)-ll—lAT<"'<1im Py < o

N—-QO
ool Poratir@ +aln) A AT e Ay AT

i.e. as many apriori bounds can be found as is de=
sired for the numerical scheme.

(d) The best estimate of PN (in the continuous case)
can be expressed as follows:

A

N

max (41)
N

(1/2) [ Ry + Ryyl

(e)The error in the estimate specified by equation
(41) can be no worse than the following bound:

|

The proof of thecrem (4) is outlined in Appendix (C).

| -
£, | R

[l 3

¢ IRy

N
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The results of this last section seem most interest-
ing in the study of the accuracy of methods to im-
plement the Riccati equation. It is the contention
here that since these methods reduce to the "most
efficient" method in the scalar case, they should be
considered first in the calculation of Riccati type
equations.

IX Summary and Conclusions

An iterative algorithm is presented for obtaining
matrix square roots. The techniques used to derive
the algorithm can be used in discrete implementation
of the Riccati equation. The advantage of this ap-
proach is the development of apriori bounds on both
the matrix computations and the Riccati solutions.
Examples are worked to illustrate this method.

Appendix A

In this appendix all inequalitjes refer to matrix
inequalities, i.e. ADB implies x*[A-B]x is positive
for all vectors x of the appropriate dimensions. To
prove theorem 2, lemmas 1-7 must be shown to be true.
Lemma (1):

Let Al’ B, AZ' Cl. C, be positive definite matrices

with: 2
& =l =1 4 =}
Al ISR c1 ] (A.1)
" -1 -1 -1
Ay [ B+ % c, | (A.2)
if c1> C)» then A1> A,-
Proof:
AT eyt g e
1
s R i | -1
and A2 = B + C2

since C1:>C2 and both matrices are positive definite

then we have [17]:C;1j> CII but

P R |
2 2
=1 -1 =1
¢ AL B
or A;l RN AIl < el (A.3)

or A;lj> AII , but since both matrices are positive

definite implies Af> AZ'
Q.E.D.

Lemma 2:

Let A,B, and C be positive definite matrices with

ce (L4 a1yl
arise:

then the following inequalities

C <B (A. 4)

c <A (A.5)




Proof of Lemma 2: -1
Note C " =A" +8B

Hence C—1:>-A_l

And s

Therefore C<B and C<A follows.

Q.E.D.
Lemma 3
The matrix subsequences RN for N=0,2,4,6,"""' (all
even integers) form a monotonically increasing
matrix sequence, i.e.

R°<R2<R4<R6< <RN<<

Proof:
The proof is by mathematical induction. By calcula-
tion:

RO meie b
(]

R, - 1+[2(s1-1)‘1+(zr)‘11'1> I=Rr

2

S,-1
Hence RZ) R . For notation simplicity let B‘_];T >0,

then:
-1 = -1.-1
R2 =1+ [B +(‘+Ro Yol
-1

(a.6)

-1 -1
Ra =1+ [B +(I+R2) ] (A.7)

But from lemma (1) if 1+R2:>1+R0, and using (A.6)
and (A.7) yields:
RA:> R,

Now assume the results hold for RN' it is necessary
to show that they hold for RN+2' Note we assume

RN:> Ry-2 (N even)

but B, =T+ | g +(I+RN_2)_l]_l

Rypp = 1+ [B77 +(srp™17

But from lemma (1) if (I+RN):> I+RN_2 implies
RN+2:> RN. Since the results hold for N=0, and N=2,
they hold for all N.

Lemma (4):
The matrix subsequences RN for N=1,3,5,7;""" (all

Q.E.D.

odd integers) form a monotonically decreasing matrix
sequence, i.e.

RS R RSRS>RS> AR
Proof

Again the proof is by mathematical induction. By
calculation:

Ry = (1/2) [s; +1]

(%1-1 -
Ry=1+ L2 ) # 1(21+[2(sl-1)'11"1]'2|

=1
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But using lemma (2) implies:

S, -1
1
Ry -1 < L5
Sl+I
or <<:———- =
R3 2 R1
Hence R3 <:R1

S,-I
For notation simplicity let B= _EE_,> 0, then:

-1

Bosighe st +(1+Rl)'l ]

3

-1

oo im T BT +(1+R3)'1 ]

5

Now use lemma (l). If I+R1 :>I+R3, then this implies
from lemma (1) that R3:> R5 or Rl)> R3§> RS' Now

assume the results hold for R it is necessary to

N?

show that they hold for RN+ We assume:

5"
Ry <Ry, (N odd)

But:
-1 -1.-1
Re=I+[B + (I+Ry_,) 7]

Rypo ™ LH B4 (1+RN)'1 ]'1

but from lemma (1) if I+RN<:I+RN_2 this implies
RN+2 <:RN. Since the results hold for N+1,3,5, then

they hold for all N. Q.E.D.

Lemma (5) The following statements are true:
(A.5.1) All RN (N even) are bounded above by Rl'
(A.5.2) All RM (M odd) are bounded below by Ro'

(A.5.3) 1lim R_ = R
N N Noo

(A.5.4) lim R =
M-’(Z)RM RMCD

Proof:
To show (A.5.1) is true, i.e.
P e W g o N (A.8)

First it is known that all RN (N even) satisfy:

S.-I\-1
1 -1,-1
RN+2 =1+ [<<—7{j> + (I+RN) ]

or Sl-I\\ % o
TR ) e

Now use lemma 2 which implies that:

Sl -1
RN+2‘I< 3

dl

5




or

S

Ru+2< e i (.9

S +I

Since R -I<: for Sl;:>1, then (A.9) implies

that RN+2<R1 for all N even. ok

To show (A.5.2) is true, i.e.

ESES D UNES v g ada)
(A.10)

Proof:

S, +1
R, = >1-n R

Hence Rl> R, but all Ry (M odd) satisfy:

-1
s,-1
=1+ [(-—12—> + (1+RM)'1
or Sl—I P -1
Ry -1 = L) ramy

or RM+2> I=R for all M odd. This implies (A.5.2)

is true for all M odd.
Q.E.D.

The statements (A.5.3) and (A.5.4) follow from
(A.5.1), (A.5.2), lemmas (3,4) and the theorems of

monotone operators in a Banach space [23].
Lemma (6):

RN+1 = RN <0 if N is odd

le - RN>0 if N is even

Proof: The following expression can be calculated:
B3y ot
‘ﬁ«ﬂ'kn'[(z)*(”"n-l) ]

=1
S -1
-1 ( + ()

rewrite this as:

Bt~ By =4 4
From lemma (1) we have: A -A, S0 Af RN—1:> R
and A;-A, <O if Ry 1<RN_

but from lemma (5) we know R°<R2<Rl

Hence:

N-2

Ry = R, >0 ,N=0

1

Ry * R1<0 ,N

1

By mathematical induction assume R , <:RN—2
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(for N odd), then from lemma (1), 1-A2<f 0. Since
this is true for N=3, it holds for all N.

Q.E.D.
Assume Ry_ 1:> RN 2 (for N even). By mathematical
induction:

A - A2> 0 by lemma (1)

Since this is true for N=2, it holds for all N.

Q.E.D.
Lemma (7):
For N even lim =
s By = Ry
For M odd lim =
X R0
and B~ B ’
Proof :

The proof is by contradiction. Assume the contrary and
and

RN»::J'RMCJL'>=_A4= 0

The following expression is easily calculated:

B in ) = um(a 7! +qr, )17t
e N TRy = I Ry-1 $

g +(I+RNZ'1 e

If N is odd, then from lemma (6) this impliesA <o.
If N is even, then from lemma (6) this impliesA> 0.
These last two statements yield a contradiction if

+ 0. Note iff\= 0, then everything is consistent.
This completes the proof of theorem (2).

Appendix B

wv.._‘,.«_,,\,FA....‘_..A..

To show the best estimate of a matrix square root is
is:
o~
S0 = m;x {1/2) | RN + RN-l]

(B.1)
Define the best estimate S as that estimaie which

minimizes:
min 3 = ||3, - s}/z | e 7

. |
o]

But from lemma (3) and (4) of appendix A we have
(for some N):

|
R°<R2<Rl‘< . <x2N<s”2

< Ry < <KRy KRy

(B.3)
Now substituting g; from (B.1) into (B.2) yields:

1 1/2 1/2
g ||E(“N‘S1 ) + 3 (Ryy-S) )”

The following inequality now results:

_(RNSUzI

Re_, - 1/2))”

(B 4

+

se |

=




The inequality (B.4) has the smallest upper bound if
Ry and RN—l are chosen as the largest values of the

computed apriori bounds in (B.3). The term best es-
timate is the guess of S, which minimizes the right
hand side of equation (B.4).

To show that the statement (3b) of theorem (3)
is true, the worst case guesses of RN and 1 are
substituted into equation (B.4). This yields the
upper bound (38b).

Q.E.D.

Appendix C

One would expect to obtain bounds on Riccati eq-
uations when formulated in the factorization frame-
work. See, e.g. [24,25] for simplification of Riccati
equations when studied within the context of optimal
control and estimation theory. The proof of theorem
(4) now follows as previously demonstrated in Appen-
dices A and B using the same technique. To outline
the proof of theorem (4) the following lemmas can be
easily shown to be true by following the similar
proofs in Appendices A and B. -
Lemma (8): The matrix subsequences
€all even integers) form a monotonically increasing
matrix sequence, i.e.

R, <R<R, <R < <Ry <<

Lemma (9): The matrix subsequences R
(all odd integers) form a monotonica
matrix sequence, i.e.

R> R RS>, > >
Lemma (10): The following statements are true: _
G101} ALL Ry (N even) are bounded above by R,.
€€.10.2) ALl FM (M_odd) are bounded below by Ro;

for M=1,3,5,:-.
ly decreasing

(C.10.3) 1im R, =
Ha RS

(C.10.4) 1im R, =
1in Ry = Ry

Lemma (11): ﬁml - RN <0 if N is odd
§N+l - §&:> 0 if N is even

Lemma (12): For N even lim EN =?Nm
N—-cq_
For M odd lim Ry = R
By s M~ Moo
and = . All statements in theorem (4) follow
when lemmas (8-12) are proved.

References

[1) Bierman,G.J.,"Sequential Square Root Filtering
and Smoothing of Discrete Linear Systems" ,Automatica,
Vol. 10, pp. 147-158, March, 1974.

[2] Bierman, G.J.,'Measurement Updating Using The
U~D Factorization', Proceedings of The 1975 IEEE
Conference on Decision and Control, pp. 337-346.

[3] M. Morf and T. Kailath, "Square-Root Algorithms
For Least Square Estimation', IEEE Transactions on
Automatic Control,Vol. AC-20, pp. 487-498, Aug.,1975,

[4] Bierman, G.J. and C.L. Thornton, "Numerical Com~
parison of Discrete Kalman Filter Algorithms: Orbit

Determination Case Studies'", 1976 IEEE Conference on
Decision and Control, Clearwater, Florida, Dec.,1976.

for N=0,2,4,6,-.

[5] Repperger, D.W.,"A Square Root of A Matrix Ap-
proach To Obtain The Solution To A Steady State Matrix
Riccati Equation', IEEE Trans. Automat. Contr., Vol.
AC-21, No. 5, October, 1976, pp. 786-787.

[6] D.L. Kleinman,'"On An Iterative Technique For Ric-
cati Equation Computations', IEEE Trans. Automat. Contr.,
Vol. AC-13, pp. 114-115, February, 1968.

[7] D.L. Kleinman,"Iterative Solution of Algebratic
Riccati Equations',IEEE Trans. Automat. Contr.,Vol.
AC-19, pp. 252~254, June, 1974.

[8] D.G. Lainiotis,"Discrete Riccati Equation Solu-
tions:Partitioned Algorithms", IEEE Trans. Automat.
Contr., August, 1975, pp. 555-556.

{9] D.G. Lainiotis,"Generalized Chandrasekhar Algor-
ithms:Time Varying Models", IEEE Trans. Automat.

Contr., October, 1976, pp. 728-732.

[10] D.G. Lainiotis, "Partitioned Riccati Solutions

and Integration-Free Doubling Algorithms",IEEE Trans.
Automat. Contr, Vol. AC-21, No. 5, October, 1976.

[11] E.D. Denman, A. N. Beavers,'The Matrix Sign Func~
tion and Computations in Systems', Applied Mathematics
and Computations, Vol. 2, pp. 63-94, 1976.

[12] A.N. Beavers and E.D. Denman,"A New Solution
Method For Quadratic Matrix Equations', Mathematical
Biosciences, Vol. 20, pp. 135-143, 1974.

[13] R.S. Bucy,'"Global Theory of The Riccati Equation”,
Journal of Computer and System Sciences, Vol.l, 1967.
[14] J.E. Potter,'"Matrix Quadratic Solutions',J. SIAM
Applied Mathematics, Vol. 14, No. 3, May, 1966

[15] M.E. Womble, and J.E. Potter,"A Prefiltering Ver-~
sion of The Kalman Filter With New Numerical Integra-
tion Formulas For Riccati Equations', 1973 IEEE Con-
ference on Decision and Control, pp63-67.

[16] C. Visser,'"Notes on Linear Operators', Proc.

Acad. Sci. Amsterdam, Vol. 40,pp. 270-272, 1937.

[17) R.E. Bellman,"Introduction to Matrix Analysis",
McGraw-Hill, 1960, pp. 177.

[{18] K.J. Astrom,"Introduction To Stochastic Control
Theory", Academic Press, 1970, pp. 116-125.

[19] Hardy, G.H. and Wright, E.M.,"An Introduction To
The Theory of Numbers'", Oxford University Press, 1960.
[20] Niven, I. and Zucherman,"An Introduction To The
Theory of Numbers", John Wiley and Sons, 1966.

[21] R.E. Kalman,"Toward a Theory of Difficulity of
Computation in Optimal Control", Proceedings of The

IBM Scientific Computing Symposium-Control Theory

and Applications, 1966.

[22] Repperger, D.W.,'"The Most Efficient Method To
Numerically Compute The Solution of The Scalar Steady
State Riccati Equation', 1976 International Conference
on Information Sciences and Systems, Patras, Greece.
[23] L. V. Kantorovich and C.P. Akilov,'"Functional
Analysis in Normed Spaces'", New York:MacMillan,
1964, pp. 189-~190.

[24] Repperger, D.W.,"An Algorithm For Computation of
The Minimum Energy Solution of Systems With Retarda-
tion", International Journal of Control, Vol. 19,
No. 6, 1974, pp 1047-1055.

[25] Repperger, D.W. and A.J. Koivo,"On Stable, For-
ward Filtering and Fixed-Lag Smoothing in a Class of
Systems With Time Delays", IEEE Transactions on
Automatic Control, Vol. AC-19, pp. 266-268, June,
1974.




